疾病预防控制通报杂志

期刊简介

  《疾病预防控制通报》原名《地方病通报》,创办于1986年5月,于2011年正式更名,是中华预防医学会系列杂志优秀期刊,由新疆维吾尔自治区卫生计生委主管,新疆维吾尔自治区疾病预防控制中心主办,刊号ISSN1000-3711/CN65-1286/R,邮发代号58-95。1992年曾被评为全国基础医学寄生虫学核心期刊,目前已被国内外多家数据库收录,如《中国期刊全文数据库》和《中国学术期刊综合评价数据库》(独家)(CAJCED&CJFD)、《中文生物医学期刊文献数据库》和《中国生物医学期刊引文数据库》(CMCC&CMCI)、英国CAB Abstracts 和 Global等等。本刊坚持“贯彻落实党和国家卫生工作方针政策,结合西部地区卫生防病工作需要,交流疾病预防控制工作成果和防治经验,服务新疆及西部地区疾病预防控制事业发展”的办刊宗旨,主要报道鼠疫、布鲁氏菌病、克山病、大骨节病、碘缺乏病、氟(砷)中毒病、包虫病、黑热病、血吸虫病、疟疾、肠道寄生虫病、性病/艾滋病、结核病、职业卫生与职业病、计划免疫、放射卫生与放射病、消毒杀虫灭鼠、医学动物与昆虫、健康教育、社区卫生、农村卫生、妇幼保健、卫生监督等疾病预防与控制研究的相关内容。《疾病预防控制通报》将为我国的疾病预防控制事业的不断发展而努力,并为广大的卫生工作者提供更好、更优的交流平台。


基于人工智能多模态影像的糖尿病视网膜病变早期筛查模型:一项全国多中心横断面研究

时间:2025-08-29 16:46:21

背景:糖尿病视网膜病变(DR)早期干预可降低 60% 失明风险,但基层筛查覆盖率不足 35%。

目的:开发并验证融合彩色眼底照(CFP)+OCTA 血流参数的深度学习模型,评估其在真实世界的筛查效能。
方法:纳入 2022.7-2024.1 全国 9 省 18 家医院 12,468 例 2 型糖尿病患者的 24,936 张 CFP 与 12,468 组 OCTA 图像。采用 ResNet-50+Transformer 混合架构,内部验证 7:1:2,外部验证 2,000 例。主要指标:AUC、敏感性、特异性;次要指标:基层医生读片时间变化。
结果:模型 AUC 0.952(95% CI 0.941-0.963),敏感性 94.3%,特异性 90.7%,优于单模态 CFP 模型(AUC 0.893)。在基层使用 AI 辅助后,平均读片时间由 4.8 min 降至 1.1 min。
结论:多模态 AI 模型显著提升 DR 早期筛查效率,适合基层大规模部署。

Methods 细节

 图像标注:两位视网膜专家独立分级,κ=0.89;分歧由第三位仲裁。
数据增强:随机旋转、色彩抖动、CutMix。
统计:DeLong 检验比较 AUC;McNemar 检验比较敏感性/特异性。

References 建议

1.Ting DSW, et al. Lancet Digit Health 2023.

2.中国糖尿病视网膜病变筛查指南 2024.